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The Swendsen�Wang Process Does Not Always Mix
Rapidly
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The Swendsen�Wang process provides one possible dynamics for the q-state
Potts model. Computer simulations of this process are widely used to estimate
the expectations of various observables (random variables) of a Potts system in
the equilibrium (or Gibbs) distribution. The legitimacy of such simulations
depends on the rate of convergence of the process to equilibrium, as measured
by the ``mixing time.'' Empirical observations suggest that the mixing time of the
Swendsen�Wang process is short in many instances of practical interest,
although proofs of this desirable behavior are known only for some very special
cases. Nevertheless, we show that there are occasions when the mixing time of
the Swendsen�Wang process is exponential in the size of the system. This
undesirable behavior is related to the phenomenon of first-order phase transi-
tions in Potts systems with q>2 states.

KEY WORDS: Ferromagnetic Potts model; first-order phase transition;
mixing time; random graph model; Swendsen�Wang dynamics.

1. INTRODUCTION

The Potts model(25) is a natural generalisation of the Ising model to an
arbitrary number q�2 of states or ``spins.'' A (finite) Potts system��i.e.,
instance of the Potts model��is defined by a finite interaction graph
G=(V, E ), a number q of spins, and a non-negative inverse temperature ;.
The graph G has vertices (sites) V=[0,..., n&1] and edges (potential
bonds) E; members of E are unordered pairs of elements from V. A con-
figuration _=(_1 ,..., _n) # QV of the system is an assignment of spins from
a finite set Q=[0,..., q&1] to the vertices, where _i denotes the spin at
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vertex i. For the ferromagnetic Potts model��the focus of this article��the
energy of a configuration _ is given by the Hamiltonian

H(_)= :
(i, j) # E

(1&$(_i , _j ))

where $ is the Kronecker-$ function which is 1 if its arguments are equal,
and 0 otherwise. The partition function of the Potts system is

Z=Z(G, q, ;)=:
_

exp(&;H(_))

where ;>0 is the inverse temperature, and the sum is over all qn configura-
tions _. Essentially, Z is the normalising factor in the Gibbs distribution,
which assigns probability ?(_)=Z&1 exp(&;H(_)) to each configura-
tion _. In a ferromagnetic Potts system, the Gibbs distribution favours
configurations assigning like spins to many adjacent pairs of vertices. For
background material on the Potts model, we refer the reader to Baxter
[2, Chap. 12] or Martin.(21)

One is interested in sampling configurations from the Gibbs distribu-
tion, with the aim of obtaining estimates for certain random variables on
configurations. In the absence of effective direct methods, the usual
approach to sampling configurations is via the ``Markov chain Monte
Carlo'' method.(14) The idea is to provide the model with a dynamics by
defining an ergodic Markov chain M on configurations whose stationary
distribution is the required Gibbs distribution. In analysing MCMC algo-
rithms, the key parameter is the mixing time of M: roughly, the number of
steps before M is close to the stationary distribution. Provided the mixing
time of M is short, configurations may be efficiently sampled by simulating
M for a sufficient, but not excessive, number of steps.

A number of different dynamics are possible. The simplest is to move
between configurations by changing one spin at a time, with transition
probabilities determined by ``heat bath'' or ``Metropolis'' rules.(22) It is fairly
easy to demonstrate situations in which the mixing time of such a ``single
spin-flip'' Markov chain is exponential in n, the size of the graph, even in
the ferromagnetic case.3 A more complicated dynamics, which allows many
spins to change in one step, was proposed by Swendsen and Wang(29) and
is now widely used in computer simulations.

The Swendsen�Wang process (as we shall call it), or SW-process for
short, appears to have a short mixing time in many instances of practical
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interest. This empirical observation might encourage us to attempt to prove
that the mixing time of the process grows not too quickly as a function
of n, specifically that it is bounded by a fixed polynomial in n, independent
of the other parameters of the system. Indeed, Cooper and Frieze(7) have
made progress in this direction by restricting the form of the interaction
graph, and sometimes the temperature range as well. Such a result, if it
could be established in full generality, would imply the existence of an
efficient approximation algorithm��more precisely, a ``fully polynomial
randomised approximation scheme'' or FPRAS(16, 14)��for computing the
partition function of a q-state ferromagnetic Potts system. Such an algo-
rithm is known to exist only in the case q=2.(12)

Our main result (see Proposition 7 and Corollary 8 for a precise state-
ment) demonstrates that this is a vain hope. For a certain particularly sim-
ple family of Potts systems based on the complete graph Kn on n vertices
(the so-called mean-field model) the SW-process is still far from equi-
librium after exponentially many steps. This counterexample is valid for all
q�3 and for a suitably chosen temperature, actually the critical tempera-
ture at which the mean-field model undergoes a first-order phase transition.
In rough terms we make rigorous the following intuition: a disordered
(resp., ordered) spin configuration tends to lead to a random cluster con-
figuration with low (resp., high) bond density, which in turn leads back to
a disordered (resp., ordered) spin configuration.

It is an open question whether the mixing time is polynomial when
q=2 (the Ising model), or if the negative result can be extended to more
physically realistic instances of the Potts model, for example, 2- or 3-di-
mensional lattices. In principle, it seems that the methods described here
should extend to the latter situation, since it is known that the q-state Potts
model on lattices exhibits a first-order phase transition, for large
enough q.(19) However the technical difficulties of this extension seem con-
siderable.

2. COMPUTATIONAL COMPLEXITY OF THE POTTS MODEL

Many physical properties of a Potts system can be computed from the
knowledge of the partition function Z. For example, certain derivatives
of ln Z correspond to quantities such as mean energy and mean magnetic
moment. Singularities in these derivatives (in the limit, as n � �) generally
correspond to phase transitions, when a small change in a parameter has an
observable effect on the macroscopic properties of the system. If a small
change in temperature causes a phase transition, then that temperature is
called the critical temperature.
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The problem of evaluating the partition function of the Potts model is
also of interest from the standpoint of theoretical computer science, as it is
one of a large class of a significant combinatorial enumeration problems
that are known to be *P-hard,4 and hence apparently computationally
intractable. This is an intriguing class, which includes the problems of com-
puting the volume of a convex body and the permanent of a 0-1 matrix.
The reader is referred to Welsh(30) for a survey of statistical physics from
a computational complexity perspective. The Potts model also turns out to
be one of the many specialisations of the celebrated Tutte polynomial in
graph theory. See Welsh [31, p. 62] for more on this interesting connection.

In the absence of efficient exact algorithms, much effort has been
devoted to finding efficient approximation algorithms for *P-complete
problems, where by efficient we mean that the algorithm runs in time poly-
nomial in the input size, in this case the number of vertices n. Randomness
has played a major role in this area, and efficient randomised approxima-
tion algorithms have been given for computing the volume of a convex
body and estimating the permanent of a dense 0-1 matrix, as well as for
many other problems. Each of these algorithms is an example of an
FPRAS, i.e., an approximation algorithm that produces solutions which,
with very high probability, fall within arbitrarily small error bounds
specified by the user, the price of greater accuracy being a modest increase
in runtime.

Most of these algorithms exploit the MCMC method, which has been
used extensively over the years by physicists, and more recently by com-
puter scientists too. For background information on applications of
MCMC in computer science, refer to the surveys by Kannan(15) and
Jerrum and Sinclair.(14) Given the apparent computational intractability of
the Potts model in terms of finding exact solutions, it is a natural candidate
for the MCMC method.

A significant theoretical advance came in 1990 when Jerrum and
Sinclair(12) described the first FPRAS for the partition function of an
arbitrary ferromagnetic Ising system (i.e., Potts system with q=2). Their
application of MCMC was indirect, employing a Markov chain on ``edge
configurations'' which are far removed from spin configurations. Neverthe-
less, the partition functions of edge and spin configurations are closely
related, and the edge-configuration Markov chain has polynomially bounded
mixing time. Unfortunately, the connection between the two partition
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functions is specific to case q=2, and the method does not generalise to
q>2. The resulting algorithm is only of theoretical interest, as the polyno-
mial bounding the mixing time of the edge-configuration Markov chain is
of rather high degree.

The antiferromagnetic case seems to be even harder: in fact, for the
Ising model, Jerrum and Sinclair (12) (following Barahona (1)) proved that
the existence of even an FPRAS is highly unlikely. Similar results for the
Potts model have been proved by Welsh [31, p. 138]. However, it is worth
mentioning that if q�22, where 2 is the maximum degree of a vertex in
the interaction graph G, then a ``single spin flip'' Markov chain (described
in the next section) can be shown to be rapidly mixing and yields an
FPRAS. This was shown for the zero temperature case (; � �) by
Jerrum, (13) and then extended to arbitrary temperature (at least for
q>22), by Sokal, (28) using the Dobrushin uniqueness criterion (26) as a
quantitative tool. The latter result has also been proved by Bubley and
Dyer(5) by using a simple but powerful technique called ``Path Coupling.''
Indeed, the same authors together with Greenhill(6) have had some success
in pushing the boundary of positive results into the region q<22.

3. MCMC APPROACHES TO THE POTTS MODEL

Before introducing and comparing the various approaches, let us agree
on a precise definition of mixing time.

Let M be an ergodic Markov chain with finite state space 0 and
stationary distribution ?: 0 � [0, 1]. Denote the t-step transition proba-
bilities of M by Pt( } , } ). For each time step t and initial state x define

$x(t)= 1
2 :

y # 0

|Pt(x, y)&?( y)|=max
A�0

|Pt(x, A)&?(A)|

where Pt(x, A)=�y # A Pt(x, y). Thus $x measures the total variation dis-
tance of the t-step distribution from stationarity. Then the rate of con-
vergence to stationarity from initial state x may be measured by the mixing
time, i.e., the function

{x($)=min[t: $x(t$)�$ for all t$�t]=min[t: $x(t)�$]

(Equivalence of last two expressions is a consequence of $x(t) being a
monotonic non-increasing function of t.) When making statements about
rates of convergence that are independent of the initial state, the appropriate
version of mixing time is {($)=maxx {x($), where the maximum is over all
x # 0. By rapid mixing, we mean that {($)�poly(n, log $&1).
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The simplest MCMC approach is based on a ``single spin flip'' process.
Consider the Markov chain MSS whose state space 0=QV is simply the set
of all possible configurations, and whose transition probabilities are speci-
fied by the following procedure (where _ denotes the current configuration):

(SS1) Choose a site i # V and a spin s # Q, uniformly at random
(u.a.r.).

(SS2) Assign spin s to site i to get a new configuration _$, and let the
probability of accepting the move be pacc=min[1, ?(_$)�?(_)].

(SS3) With probability pacc let the next state be _$, and with prob-
ability 1& pacc let the next state be _ itself.

We have used the Metropolis rule to determine transition probabilities
here, but we could equally well have used the heat-bath rule.

It is easy to see that the mixing time of MSS above can be exponential
in n. To be specific, consider the case of an Ising system, i.e., set q=2. It
is well known that ferromagnetic Ising systems typically exhibit a phase
transition at a certain critical value of the parameter ;; above this critical
value, the system settles into a state in which there is a preponderance of
one or the other of the two spins. Configurations with balanced spins are
very unlikely in the Gibbs distribution, leading to a ``constriction'' in the
state space. The expected time for a trajectory starting in a typical majority
spin 0 configuration to reach a majority spin 1 configuration is exponential
in n.

Before introducing the SW-process, it is instructive to look at a related
model, called the random cluster model, which was introduced by Fortuin
and Kasteleyn(10) in 1972. We again have the interaction graph G=(V, E ).
However, the configurations are now based on edges instead of vertices;
specifically, a configuration is simply one of the 2 |E | subsets of the edge
set E. Aside from G, there are two parameters which specify a random
cluster system: a probability p of edge selection, and a weighting factor q.
(When this q is a positive integer it corresponds to the q in the Potts
model; however, in the random cluster model, q may be an arbitrary non-
negative real number.) The partition function for the random cluster model
is given by

ZRC=ZRC(G, q, p)= :
A�E

p |A|(1& p) |E |&|A| qC(A)

where A�E denotes a configuration, and C(A) the number of clusters
in A, i.e., the number of connected components in the subgraph (V, A). The
sum is over all 2 |E | configurations.
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It turns out that the q-state Potts model is equivalent to the random
cluster model with p=1&e&;, where ; is the inverse temperature as
described earlier, and the parameter q is common to both models. This
relationship was discovered by Fortuin and Kasteleyn(10) (for more infor-
mation see, e.g., ref. 8). The equivalence is close, even at the microstate
level: to obtain a Potts configuration from a random cluster configuration,
simply assign a spin from Q independently and u.a.r. to each cluster. Note
that the random cluster model effectively generalises the Potts model to an
arbitrary (possibly non-integral) positive number of spins.

A natural dynamics for the random cluster model is provided by the
``single bond flip'' process. Consider the Markov chain MRC whose state
space 0=2E is simply the set of all possible configurations, and whose
transition probabilities are specified by the following procedure (where E
denotes the current state):

(RC1) Choose an edge e # E u.a.r.

(RC2) Let A$=A�[e] be the proposed new configuration5 and let
the probability of accepting the proposed configuration be
pacc=min[1, ?(_$)�?(_)].

(RC3) With probability pacc let the next state be A$, and with proba-
bility 1& pacc let the next state be A itself.

Again we have used the Metropolis rule to determine transition probabil-
ities.

The Markov chain MRC does not suffer from the obvious state space
constriction that MSS does; indeed, nothing much is known about the mix-
ing time of MRC in general when q=2 (even whether it is exponential in n
or polynomial). However, we shall see later that the mixing time may be
exponential in n when q�3.

The SW-process is a hybrid of the previous two approaches in that it
alternates between Potts and random cluster configurations. Unlike the
single spin flip dynamics, it is not local, and a single transition may affect
a large number of sites. By the Swendsen�Wang process (SW-process) we
mean the Markov chain MSW whose state space 0=QV is the set of all
possible (Potts) configurations, and whose transition probabilities are
specified by the procedure about to be presented. Let the current Potts
configuration be denoted by _. The next configuration _$ is obtained as
follows:

(SW1) Let A� �E be the subset of edges that form a bond, i.e., ones
with the same spin on both incident sites. Each of the edges
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in A� is retained independently with a probability p=1&e&;;
this gives a subset A of A� .

(SW2) Consider the clusters (connected components) of the graph
(V, A). For each cluster, a spin is chosen uniformly at random
from Q, and all sites within the cluster are assigned that spin.

That MSW is ergodic is immediate; that it has the correct stationary dis-
tribution is not too difficult to show. (See, for example, Edwards and
Sokal.(8))

A MCMC approach based on MSW seems to work very well in prac-
tice, and the non-local nature of the transitions seems to allow the chain
to move more freely within the state space, thus avoiding the possible con-
strictions that might result at low temperatures. Nevertheless we show that
there are occasions when the mixing time of MSW is exponential in n.
Specifically, when the interaction graph is the complete graph Kn , and
q�3, we prove that the mixing time is exponential in n.

4. A FIRST-ORDER PHASE TRANSITION

The slow mixing rate of the SW-process is connected with a phenome-
non known as first-order phase transition, which we now investigate in the
context of the Potts model on the complete graph (mean-field model). We
exhibit two distinct kinds of configurations that account for all but an
exponentially small fraction of the partition function Z. In fact, by tuning
the temperature of the system, we arrange that the two kinds of configura-
tions make a roughly equal contribution to Z. Such a system is said to be
in a mixed phase and the two kinds of configurations are called coexisting
phases.(9) This value of this (inverse) temperature is referred to as its critical
value, and is denoted here by ;cr).

When ;>;cr , the system prefers the so called ordered phase (one of
the spins dominates). As ; is decreased (i.e., temperature is increased), the
system goes into a mixed phase at ;=;cr and then makes an abrupt transi-
tion to the disordered phase (each of the q spins appears roughly the same
number of times) when ;<;cr . A plot of the expectation of some
appropriate macroscopic observable as a function of ;��for example, any
reasonable measure of imbalance in the sizes of the spin classes��would
reveal a discontinuity at ;=;cr (in the limit as the size of the system tends
to infinity). This discontinuity marks a first-order phase transition and
reflects a crucial instability in the model.

In the case of the Potts model on the complete graph, as we shall see
presently, explicit calculations can be performed which reveal the existence
of a first-order phase transition for all q�3. This fact was already known
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(see, e.g., Kesten and Schonmann(18)); indeed Bolloba� s, Grimmett and
Janson(4) have recently proved the existence of a mixed phase for the random
cluster model on the complete graph when q>2 (where q is not necessarily
integral). The new aspect of this paper is an analysis of the impact of the
mixed phase on the dynamics: in Section 5, we show that the SW-process
only very infrequently makes a transition between the coexisting phases,
resulting in a slow mixing rate.

Although we shall deal exclusively with the complete graph, it is worth
mentioning that the Potts model is generally believed to exhibit a first-
order phase transition on more physically realistic graphs, at least for large
enough q. For example, it is widely believed that the Potts model on a two-
dimensional lattice exhibits a first-order phase transition when q>4. This
belief has received rigorous support only for sufficiently large (but explicitly
determined) q; see, e.g., Laanait et al.(19)

Consider an arbitrary configuration _ # 0 of the q-state Potts system.
Recall that the equilibrium probability of _ is given by

?(_)=Z&1 exp(&;H(_))

where H(_) is the Hamiltonian, i.e., the number of pairs of sites in E with
different spins. We choose ;=c�n, where 1<c<q is a constant depending
on q. (See (4) for an explicit expression for c.) For the complete graph Kn ,
since all interactions are present, the only relevant observable quantities
are the sizes of the spin classes. Let n=(n1 ,..., nq) be the vector whose i th
component is the size of the ith spin class of _; we say that n is the type
of _. Note that

H(_)= 1
2 \n2& :

q

i=1

n2
i + (1)

Since ?(_) is a function only of type, we may write ?(n) to denote the value
of ?(_) for any configuration _ of type n.

In equilibrium, the probability of being in a configuration of type n is
N(n)_?(n), where

N(n)=\ n
n1 , n2 ,..., nq+

denotes the number of configurations of type n. Let a=(a1 ,..., an)=n�n.
Using Stirling's approximation,

N(n)=n&(q&1)�2 exp {\& :
q

i=1

ai ln ai+ n+2(a)= (2)
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where 2(a) is an error term; in general, |2(a)|=O(log n), but the tighter
estimate |2(a)|=O(1) holds if it is known that a�(=,..., =) for some con-
stant =>0. (The implicit constants depend on q and = only.)

From (1), recalling ;=c�n, we have

?(n)=Z&1 exp {&
c
2 \1& :

q

i=1

a2
i + n=

Therefore,

Pr(_ has type n)=Z&1n&(q&1)�2 exp[ f (a) n+2(a)] (3)

where

f (a)= :
q

i=1

g(ai )&
c
2

and g(x)= 1
2cx2&x ln x.

In order to identify the types of configuration that have the largest
weight, we need to maximise f in the region defined by ai�0 for all i, and
�q

i=1 ai=1. This is clearly a closed region (viewed as a set in (q&1)-
dimensional Euclidean space), and we use R to denote it.

Proposition 1. Let a=(a1 ,..., aq) be a local maximum point of f.
Then a satisfies the following properties:

(i) a lies in the interior of R.

(ii) Either ai=q&1 for all i, or there are : and ; such that 0<:<
c&1<;<1, and ai # [:, ;], for all i.

(iii) If a is such that the ai are not all equal, then there is a unique
component aj such that aj=;; the other components ai with i{ j satisfy
ai=:. Furthermore, g$(:)= g$(;).

Proof. (i) Suppose, on the contrary, that a is such that ai=0 and
aj>0. Since g$(x) � � as x � a+

i and g$(aj ) is finite, we can increase f by
setting ai== and aj=aj&=, where =>0 is sufficiently small.

(ii) At any local maximum, it must be the case that g$(ai )= g$(aj ),
for all i and j. For suppose g$(ai ){ g$(aj ), for some i{ j. Then a small per-
turbation of = to ai and aj (either ai � ai+= and aj � aj&= or the other
way round, depending on the values of g$(ai ) and g$(aj )) would cause f (a)
to increase. Since g$(x) is unimodal (in fact convex) on (0, 1], it follows
that ai # [:, ;] for all i, where : and ; are on either side of the minimum
of g$.
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(iii) Suppose on the contrary, that aj=ak=;, where j{k. Since
g"(;)>0, setting aj � aj&= and ak � ak+= would cause f (a) to increase. K

If we now set6

c=
2(q&1) ln(q&1)

q&2
(4)

it is routine to verify that the following three choices for a satisfy properties
(i)�(iii) in the statement of Proposition 1:

(S1) ai=q&1 for all i=1,..., q;

(S2) ai=(q(q&1))&1 for all i=1,..., q&1, and aq=(q&1)�q;

(S3) ai=(2(q&1))&1 for all i=1,..., q&1, and aq=1�2.

Claim 2. The first two solutions (S1)�(S2) above (together with the
ones obtained by permuting coordinates) are the only local maximum
points of f in R, and they both correspond to the global maximum of f.
(The final solution (S3) is a local minimum.)

Proof. It is clear from Proposition 1 that any maximum point of f
should have the form ai=: for all i=1,..., q&1, and aq=;=1&(q&1) :,
for some : in (0, q&1] satisfying

h(:)= g$(:)& g$(1&(q&1) :)=0

Now h(:)=cq:&c+ln(1&(q&1) :)&ln :, and

h$(:)=cq&
q&1

1&(q&1) :
&

1
:

=cq&
1

:(1&(q&1) :)

Setting h$(:)=0, we get the quadratic equation :(1&(q&1) :)=1�cq,
which implies that h(:) has at most two turning points (and hence, at
most three zeros) in the interval (0, q&1]. Since :=(q(q&1))&1,
:=(2(q&1))&1 and :=q&1 all satisfy h(:)=0, they are in fact the only
solutions to that equation. We conclude that (S1)�(S3) are the only choices
for a consistent with the conditions of Proposition 1, and hence they must
cover all the local maximum points of f (a).
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We now proceed to show that solutions (S1) and (S2) correspond to
the global maximum of f, and that (S3) does not. (In fact it is a local mini-
mum point.) Since, by Proposition 1, we are only interested in solutions
of the form ai=: for all i=1,..., q&1, and aq=;=1&(q&1) :, we may
view f as a function of the single variable :. Accordingly, define f� (:)=
f (:,..., :, ;). For the value of c chosen above (4), we have, by direct
calculation,

f� (q&1)= f� ((q(q&1))&1)=ln q&
(q&1)2 ln(q&1)

q(q&2)
(5)

and

f� ((2(q&1))&1)=ln 2&
q ln(q&1)

4(q&2)
(6)

Denote by d(q) the difference between (5) and (6):

d(q)= f� (q&1)& f� ((2(q&1))&1)=ln q&ln 2&
(3q&2) ln(q&1)

4q

Then d(q)>0 for all q�3. To verify this, observe that for q�16,

d(q)>ln q&ln 2&
3q ln q

4q
=ln q&ln 2&

3
4

ln q�0

The cases 3�q�15 can be checked separately. Thus (S1) and (S2) are
global maximum points of f and are the only such. K

Note that d(q)= f (q&1)& f ((2(q&1))&1) is very small for smaller
values of q (e.g., of the order of 10&3 for q=3); however, since f appears
in the exponent and is multiplied by n, the actual difference in weights of
these two types of configurations is quite large even for fairly small values
of n.

Denote by B=(=) the set of all points in R that are within (Euclidean)
distance = of the balanced maximum point (q&1,..., q&1), and by B{(=) the
points that are within distance = of any of the other maximum points.
(B=(=) is a (q&1)-dimensional ball and B{(=) a union of q such balls.) Let
0=(=)/0 (respectively 0{(=)) be the set of configurations whose type n
lies in nB=(=) (respectively nB{(=)). The following result summarises what
we have discovered.
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Proposition 3. For any =>0:

(i) Pr(_ # 0=(=))=0(n&(q&1));7

(ii) Pr(_ # 0{(=))=0(n&(q&1)); and

(iii) Pr(_ � 0=(=) _ 0{(=))=e&0(n).

The implicit constants depend only on q and =.

Proof. Let a # R be chosen so that every component of a has value
either i�n or (i+1)�n for some integer i, and let n0=na; observe that all
configurations _ of type n0 are in 0=(=), provided n is sufficiently large.
Then | f (a)& f (q&1,..., q&1)|=O(n&1), and hence, by (3), the setting n=n0

comes within a constant factor of maximising Pr(_ is of type n) over all
types n. (Note that we are operating within the |2(a)|=O(1) regime.)
Since the total number of distinct types is O(n(q&1)) we have part (i).
Part (ii) is proved in a similar manner.

Finally note that the supremum of f (a) over the region a # R"(0=(=)
_ 0{(=)) is strictly less than the supremum over the whole of R. Part (iii)
follows by combining this observation with (3). K

5. DYNAMICS

It is clear from Proposition 3 that the single spin flip process MSS

described in Section 3 (refer to steps (SS1)�(SS3)) will converge only very
slowly to equilibrium, since it is difficult to escape from either of the
neighbourhoods 0=(=) or 0{(=) using small steps. Also, since these
neighbourhoods correspond to random cluster configurations with sub-
stantially different edge densities, the same remark applies equally to the
edge process MRC (refer to steps (RC1)�(RC3)). However, the SW-process
is able to change large blocks of spins in one step, which at first sight seems
to give it a significant advantage. Our main result (Proposition 7 below)
suggests that this advantage may on occasion be illusory.

Before we present a formal proof, it would be useful get an intuitive
feel as to why we expect Proposition 7 to be true. Let _ denote the current
Potts configuration. Note that the SW-process only considers edges that
form a bond, so that the configuration may be viewed as a collection of
smaller complete graphs, one for each spin in Q. Let n1 , n2 ,..., nq denote the
sizes of these graphs. Let G&, p denote the standard random graph model, in
which an undirected &-vertex graph is formed by adding, independently for
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each unordered pair of vertices u, v, an edge connecting u and v with prob-
ability p. Step (SW1) of the process essentially creates q random graphs,
Gni , p , one of each size ni , 1�i�q, where the probability of retaining an
edge is p=1&e&;. Recall that ;=c�n, where 1<c<q, so that prc�n for
large n. We now make the following (informal) observations (if c is given
a special value) that are based on fairly standard results in the theory of
random graphs(3):

v Just prior to Step (SW1), if all the spin classes in _ have roughly the
same size & (rn�q), then, for any such class, the probability p of retaining
an edge can be written as d�&, where drc�q, so that d<1. A well-known
result in the theory of random graphs(3) tells us that with very high prob-
ability, the spin class will break up into very small components (of size
O(log &)) so that at the end of Step (SW2), after assigning random spin
values to these very small components, with high probability, we again end
up with all spin classes having roughly equal size.

v Just prior to Step (SW1), if there is one very large spin class in _
and all the other spin classes are very small, then the value of d (as above)
would be greater than 1 for the large class whereas it would be less than 1
for the other classes. We can now appeal to results about ``the giant com-
ponent'' in random graphs(3) to say that, with high probability, at the end
of Step (SW1), there would be one large component and all the other com-
ponents would be very small. This means that at the end of Step (SW2), we
expect, with high probability, a configuration similar to the one before
Step (SW1). The choice of c determines how close the new configuration
would be to the previous one.

Proposition 7 shows that when c is chosen as in (4), a q-state Potts
system tends to settle in one of the two kinds of configurations mentioned
above, and the probability of making a transition from one kind to the
other is very small. Our proof utilises some standard bounds on the tails
of distributions of sums of independent r.v's that we state here for con-
venient reference.

Lemma 4 (Chernoff ). Let the random variable Z have distribution
Bin(&, p), where Bin(&, p) is the binomial distribution with parameters &
and p. Then for any real #>1,

Pr(Z>#&p)<\e#&1

## +
&p

Proof. See [23, Theorem 4.1]. K
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Lemma 5 (Hoeffding). Let Z1 ,..., Zk be independent r.v's with
ai�Zi�bi , for suitable constants a i , bi , and all 1�i�k. Also let
Z� =�k

i=1 Zi . Then for any *>0,

Pr \ |Z� &EZ� |�*+�exp \&2*2< :
k

i=1

(bi&ai )
2+

Proof. See [20, Theorem 5.7]. K

Let G&, p denote the standard random graph model as before. Suppose
that p<d�&, with d<1 a constant, and G is selected according to the model
G&, p . It is a classical result(3) that, with probability tending to 1 as & � �,
the connected components of G all have size O(log &). We prove a large
deviation version of this result. (O'Connell(24) has recently proved a much
more refined large deviation result, but the relatively crude version given
here is enough for our purposes.)

Lemma 6. Let G be selected according to the model G&, p , where
p<d�& and 0<d<1 is a constant. Then the probability that G contains a
component of size exceeding - & is exp(&0(- & )).

Proof. Following Karp, (17) we consider a simple stochastic procedure
for growing a connected component of G from specified vertex s. Let D0=
[s] and P0=<. At step t, Dt will be the set of ``discovered'' vertices (those
that have been shown to be connected to s), and Pt�Dt the set of ``pro-
cessed'' vertices. If Dt=Pt we are done: Dt is the connected component of
G containing s. Otherwise, we select v # Dt"Pt and let Dt+1=Dt _ G(v) and
Pt+1=Pt _ [v], where G(v) denotes the set of neighbours of v in G. We
think of the edges of the random graph as revealed to us as required. So,
when processing vertex v, the edges from v to vertices outside Dt are
revealed only at the time of processing. Thus the distribution of |Dt+1|,
conditioned on Dt , is distributed as |Dt |+Bin(&&|Dt |, p), where Bin(&, p)
is the binomial distribution with parameters & and p. Note that the ter-
mination condition is equivalent to |Dt |=t.

We must show that this process terminates within - & steps with very
high probability. We do this by comparing the evolution of Dt against
another sequence of random variables (Xt) defined by X0=1 and Xt+1=
Xt+Bin(&, d�&), where all the binomial r.v's are independent. We claim that
Xt stochastically dominates |Dt |; specifically, there is a joint sample space
for Xt and |Dt | in which (always) |Dt |�Xt . To see this, note that it is easy
to construct a joint sample space for binomial r.v's Bin(&&|Dt |, p) and
Bin(&, d�&) satisfying the domination condition; now use induction on t.
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But Xt&1 is clearly distributed as Bin(t&, d�&) so we can estimate the prob-
ability that Xt is large using Lemma 4. In particular, letting #=(t&1)�td,
the probability that Xt exceeds t is bounded as follows:

Pr(Xt>t)=Pr(Xt&1>t&1)

=Pr(Xt&1>#td )

=Pr(Xt&1>#E(Xt&1))

�\e#&1

## +
td

Setting t=w- & x , and noting that # � d &1>1 as & � �, we obtain

Pr( |Dt |>t)�Pr(Xt>t)=exp(&0(- & ))

where we have used the fact that Xt stochastically dominates |Dt |. But
|Dt |>t is the event that the component building procedure has not ter-
minated at or before time t, i.e., that the connected component of G con-
taining s has size greater than t=w- & x . Multiplying by & we obtain a
bound on the probability that any connected component in G has size
exceeding - & ; this small extra factor may be absorbed by the 0-notation.

Proposition 7. Suppose q�3 is an integer, c=2(q&1)(q&2)&1_
ln(q&1), and consider a Potts system on Kn at inverse temperature ;=c�n.
Let =>0 be sufficiently small, and let 0=(=) and 0{(=) be as in Proposi-
tion 3. From any configuration _ # 0=(=), the probability of transition in
one step of the SW-process to a configuration _$ � 0=(=) is exp(&0(- n )).
Hence, starting at any configuration _(0) # 0=(=), the expected time T for
the SW-process to reach a configuration _(T ) # 0{(=) is exp(0(- n )).

Proof. Suppose the configuration _(t) at time t is an arbitrary mem-
ber of 0=(=). By definition of 0=(=), the size & of any spin-class of _(t) is
bounded above by &�(q&1+=) n. Focusing attention on a particular spin-
class of size &, the set A� constructed in Step (SW1) of the SW-process is the
edge set of a complete graph K& on & vertices, and the set A is the edge set
of a random graph G selected according to the model G&, p , where

p=1&e&;�
c
n

�\1
q

+=+ c
&

Since cq&1<1 we have p�d�& where d<1, provided = is sufficiently small.
By Lemma 7, with probability 1&exp(&0(- & )), all connected com-
ponents of G have size at most - & . Since (q&1&=) n�&�n, the same
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statement holds with n replacing &. Similar arguments apply to the other
spin-classes, so, with probability 1&exp(&0(- n )), all the connected com-
ponents formed in Step (SW1) of the SW-process have size at most - n .

Let } be the number of such components, and s1 ,..., s} be their respec-
tive sizes. From now on, we assume s1 ,..., s}�- n , i.e., we condition on an
event we know occurs with overwhelming probability. The expected size of
a spin-class constructed in Step (SW2) of the SW-process is n�q, and
because there are many components (at least - n ) we expect the actual size
of each spin-class to be close to the expectation. We quantify this intuition
by appealing to Lemma 5. Fix a spin #, and define the random variables
Y1 ,..., Y} and Y� by

Yi={si ,
0,

if the i th component receives spin # in step (SW2);
otherwise,

and Y� =�}
i=1 Yi . Then EY� =n�q and, by Lemma 5, for any *>0

Pr \ |Y� &EY� |�*+�exp \&2*2< :
}

i=1

s2
i +

�exp(&2*2n&3�2)

since

:
}

i=1

s2
i � :

}

i=1

si - n =n3�2

Similar bounds apply, of course, to the other spins. Choosing *==n�- q
we see that, with probability 1&exp(&0(- n )), the size of every spin-class
in _(t+1) lies in the range ((q&1&=�- q ) n, (q&1+=�- q ) n); but this con-
dition implies _(t+1) # 0=(=). The claimed result follows easily. K

Recall that {(1�3) denotes the number of steps, starting from the worst
initial state, to achieve variation distance within 1�3 of the stationary dis-
tribution.

Corollary 8. With parameters q and ; as in Proposition 7, the mix-
ing time of the SW-process on the complete graph Kn is exponential in n;
specifically, {(1�3)=exp(0(- n )).

Proof. Let S=0=(=) and S� =0"S. Consider a trajectory (_(t):
t=0, 1,...) of the SW process started in the stationary distribution. Then,
by Proposition 7, for any t,
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Pr(_(t) # S� 7_(t+1) # S )=Pr(_(t) # S 7_(t+1) # S� )

=Pr(_(t+1) # S� | _(t) # S ) Pr(_(t) # S )

=exp(&0(- n ))

Thus we can choose a time T=exp(0(- n )) such that

Pr(_(T ) # S� | _(0) # S )=Pr(_(T ) # S� 7 _(0) # S )�Pr(_(0) # S )� 1
10

say, with a similar inequality holding with roles of S and S� reversed.
Suppose that ?(S )�?(S� ) (otherwise reverse the roles of S and S� ).

There exists an initial state _I # S such that Pr(_(T ) # S� | _(0)=_I)�1�10.
But ?(S� )�1�2. So the variation distance of the T-step distribution starting
in state _I is at least 1�2&1�10>1�3. K

We remark that Corollary 8 immediately implies 1&*1=
exp(&0(- n )), where *1 is the second largest eigenvalue of the transition
matrix of the SW-process: see Sinclair [27, Prop. 1].

ACKNOWLEDGMENTS

We thank Alan Frieze and Boris Pittel for invaluable pointers to rele-
vant literature, Peter Winkler for an enlightening discussion on Gibbs
measures and phase transitions, and Alan Sokal for his careful reading and
constructive criticism of an early version of this paper. We also thank two
anonymous referees for their diligence. This work was supported in part by
the Esprit Project No. 21726, ``RAND2.'' A preliminary version of this
article was presented at the 29th ACM Symposium on Theory of Computa-
tion.(11)

REFERENCES

1. F. Barahona, On the computational complexity of Ising spin glass models, J. Phys. A:

Math. Gen. 15:3241�3253 (1982).
2. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London,

1982).
3. B. Bolloba� s, Random Graphs (Academic Press, London, 1985).
4. B. Bolloba� s, G. Grimmett, and S. Janson, The random-cluster model on the complete

graph, Prob. The. Rel. Fields 104:283�317 (1996).
5. R. Bubley and M. Dyer, Path coupling: A technique for proving rapid mixing in Markov

chains, Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer
Science (Computer Society Press, 1997), pp. 223�231.

6. R. Bubley, M. Dyer, and C. Greenhill, Beating the 22 bound for approximately counting
colourings: A computer-assisted proof of rapid mixing, Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM�SIAM (1998), pp. 355�363.

84 Gore and Jerrum



7. Colin Cooper and Alan M. Frieze, Mixing properties of the Swendsen�Wang process on
classes of graphs. To appear in Proceedings of a DIMACS Workshop on Statistical Physics
Methods in Discrete Probability, Combinatorics and Theoretical Computer Science, Jennifer
T. Chayes and Dana Randall, eds. (American Mathematical Society).

8. R. G. Edwards and A. D. Sokal, Generalizations of the Fortuin�Kasteleyn�Swendsen�
Wang representation and Monte Carlo algorithm, Phys. Rev. D 38:2009�2012 (1988).

9. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Grundlehren der mathe-
matischen Wissenschaften, Vol. 271 (Springer-Verlag, 1985).

10. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model I: Introduction and
relation to other models, Physica 57:536�564 (1972).

11. V. Gore and M. Jerrum, The Swendsen�Wang process does not always mix rapidly,
Proceedings of the 29th ACM Symposium on Theory of Computation (ACM Press, 1997),
pp. 674�681.

12. M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising
model, SIAM J. Comput. 22:1087�1116 (1993).

13. M. Jerrum, A very simple algorithm for estimating the number of k-colourings of a low-
degree graph, Random Structures and Algorithms 7:157�165 (1995).

14. M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: An approach to
approximate counting and integration. In Approximation Algorithms for NP-hard
Problems, Dorit Hochbaum, ed. (PWS, 1996), pp. 482�520.

15. R. Kannan, Markov chains and polynomial time algorithms. Proceedings of the 35th
Annual IEEE Symposium on Foundations of Computer Science (Computer Society Press,
1994), pp. 656�671.

16. R. M. Karp and M. Luby, Monte-Carlo algorithms for enumeration and reliability
problems, Proceedings of the 24th IEEE Symposium on Foundations of Computer Science
(Computer Society Press, 1983), 56�64.

17. R. M. Karp, The transitive closure of a random digraph, Random Structures and Algo-
rithms 1:73�93 (1990).

18. H. Kesten and R. H. Schonmann, Behavior in large dimensions of the Potts and Heisenberg
models, Rev. Math. Phys. 1:147�182 (1990).

19. L. Laanait, A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the Potts
model I: Piragov�Sinai theory of the Fortuin�Kasteleyn representation, Commun. Math.
Phys. 140:81�91 (1991).

20. C. McDiarmid, On the method of bounded differences, London Mathematical Society
Lecture Note Series, Vol. 141 (Cambridge University Press, 1989), pp. 148�188.

21. P. Martin, Potts Models and Related Problems in Statistical Mechanics (World Scientific,
Singapore, 1991).

22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation
of state calculations by fast computing machines, J. Chem. Phys. 21:1087�1092 (1953).

23. R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge University Press,
1995).

24. Neil O'Connell, Some large deviation results for sparse random graphs, Prob. Theo. Rel.
Fields 110:277�285 (1998).

25. R. B. Potts, Some generalised order-disorder transformations, Proc. Cambridge Phil. Soc.
48:106�109 (1952).

26. J. Salas and A. D. Sokal, Absence of phase transition for antiferromagnetic Potts models
via the Dobrushin uniqueness theorem, J. Stat. Phys. 86:551�579 (1997).

27. Alistair Sinclair, Improved bounds for mixing rates of Markov chains and multicom-
modity flows, Combin. Prob. Comput. 1:351�370 (1992).

28. A. Sokal, Personal communication (1995).

85The Swendsen�Wang Process Does Not Always Mix Rapidly



29. R. H. Swendsen and J.-S. Wang, Non-universal critical dynamics in Monte-Carlo simula-
tions, Phys. Rev. Lett. 58:86�88 (1987).

30. D. J. A. Welsh, The computational complexity of some classical problems from statistical
physics. In Disorder in Physical Systems (Oxford University Press, 1990), pp. 307�321.

31. D. J. A. Welsh, Complexity: Knots, colourings and counting, London Mathematical
Society Lecture Notes, Vol. 186 (Cambridge University Press, 1993).

86 Gore and Jerrum


